Перевод кинематической вязкости в динамическую

Виды вязкости

Существует несколько разновидностей вязкости:

  • динамическая;
  • кинематическая;
  • условная.

Динамическая вязкость в международной измерительной системе измеряется в паскалях в секунду. С точки зрения физики, данная величина демонстрирует изменение потерь давления за единицу времени. В системе СГС она измерима в пуазах (название дано в честь французского физика Ж. Пуазёйля. Динамическая вязкость жидкостей склонна уменьшаться при увеличении температуры, а ее повышение наблюдается с увеличением показателя давления.

Измерение кинематической вязкости осуществляется в стоксах, что представляет основополагающее значение свойства текучих сред. При задействовании специального прибора вискозиметра становится возможным измерение вязкости любой жидкости. Ее тарированный объем пропускается через калиброванное отверстие (исключая механическое побуждение) и под влиянием одной только силы тяжести.

Рисунок 2. Динамическая вязкость. Автор24 — интернет-биржа студенческих работ

Условная вязкость представляет величину, косвенным образом характеризующую гидравлическое сопротивление течению. При этом она измеряется временем истечения заданного объема раствора через вертикальную трубку с определенным диаметром. Измерение осуществляется в градусах Энглера (в честь немецкого химика).

Вязкость жидкости

Вязкость жидкости — это свойство, проявляющееся только при движении жидкости, и не влияющее на покоящиеся жидкости. Вязкое трение в жидкостях подчиняется закону трения, принципиально отличному от закона трения твёрдых тел, т.к. зависит от площади трения и скорости движения жидкости.
Вязкость – свойство жидкости оказывать сопротивление относительному сдвигу ее слоев. Вязкость проявляется в том, что при относительном перемещении слоев жидкости на поверхностях их соприкосновения возникают силы сопротивления сдвигу, называемые силами внутреннего трения, или силами вязкости. Если рассмотреть то, как распределяются скорости различных слоёв жидкости по сечению потока, то можно легко заметить, что чем дальше от стенок потока, тем скорость движения частиц больше. У стенок потока скорость движения жидкости равна нулю. Иллюстрацией этого является рисунок, так называемой, струйной модели потока.

Медленно движущийся слой жидкости «тормозит» соседний слой жидкости, движущийся быстрее, и наоборот, слой, движущийся с большей скоростью, увлекает (тянет) за собой слой, движущийся с меньшей скоростью. Силы внутреннего трения появляются вследствие наличия межмолекулярных связей между движущимися слоями.
Если между соседними слоями жидкости выделить некоторую площадку S, то согласно гипотезе Ньютона:

F=μ•S•(du/dy),

где:

  • μ — коэффициент вязкого трения;
  • S – площадь трения;
  • du/dy — градиент скорости

Величина μ в этом выражении является динамическим коэффициентом вязкости, равным:

μ=F/S•1/du/dy,

или

μ=τ•1/du/dy,

где:

τ – касательное напряжение в жидкости (зависит от рода жидкости).

Физический смысл коэффициента вязкого трения

Физический смысл коэффициента вязкого трения — число, равное силе трения, развивающейся на единичной поверхности при единичном градиенте скорости.

На практике чаще используется кинематический коэффициент вязкости, названный так потому, что в его размерности отсутствует обозначение силы. Этот коэффициент представляет собой отношение динамического коэффициента вязкости жидкости к её плотности:

ν=μ/ρ,

Единицы измерения коэффициента вязкого трения:

  • Н·с/м2;
  • кГс·с/м2
  • Пз (Пуазейль) 1(Пз)=0,1(Н·с/м2).

Анализ свойства вязкости жидкости

Для капельных жидкостей вязкость зависит от температуры t и давления Р, однако последняя зависимость проявляется только при больших изменениях давления, порядка нескольких десятков МПа.

Зависимость коэффициента динамической вязкости от температуры выражается формулой вида:

μt=μ•e-kt(T-T),

где:

  • μt — коэффициент динамической вязкости при заданной температуре;
  • μ — коэффициент динамической вязкости при известной температуре;
  • Т — заданная температура;
  • Т — температура, при которой измерено значение μ;
  • e – основание натурального логарифма равное 2,718282.

Зависимость относительного коэффициента динамической вязкости от давления описывается формулой:

μр=μ•e-kр(Р-Р),

где:

  • μР — коэффициент динамической вязкости при заданном давлении,
  • μ — коэффициент динамической вязкости при известном давлении (чаще всего при нормальных условиях),
  • Р — заданное давление,;
  • Р — давление, при которой измерено значение μ;
  • e – основание натурального логарифма равное 2,718282.

Влияние давления на вязкость жидкости проявляется только при высоких давлениях.

Ньютоновские и неньютоновские жидкости

Ньютоновскими называют жидкости, для которых вязкость не зависит от скорости деформации. В уравнении Навье — Стокса для ньютоновской жидкости имеет место аналогичный вышеприведённому закон вязкости (по сути, обобщение закона Ньютона, или закон Навье):

σij=η•(dvi/dxi+dvj/dxi),

где σij — тензор вязких напряжений.

Среди неньютоновских жидкостей, по зависимости вязкости от скорости деформации различают псевдопластики и дилатантные жидкости. Моделью с ненулевым напряжением сдвига (действие вязкости подобно сухому трению) является модель Бингама. Если вязкость меняется с течением времени, жидкость называется тиксотропной. Для неньютоновских жидкостей методика измерения вязкости получает первостепенное значение.

С повышением температуры вязкость многих жидкостей падает. Это объясняется тем, что кинетическая энергия каждой молекулы возрастает быстрее, чем потенциальная энергия взаимодействия между ними. Поэтому все смазки всегда стараются охладить, иначе это грозит простой утечкой через узлы.

Вязкость жидкостей (при 18°C)

Вещество Вязкость 10 -5 кг/(м*с)
Анилин 4,6
Ацетон 0,337
Бензол 0,673
Бром 1,02
Вода 1,05
Гелий 1,89
Глицерин 1400
Масло машинное легкое 113
Масло машинное тяжелое 660
Масло оливковое 90
Масло оливковое 90
Пентан 0,244
Ртуть 1,59
Спирт этиловый 1,22
Уксусная кислота 1,27
Эфир этиловый 0,238

Вязкость глицерина

Глицерин представляет собой органическое соединение, относящееся к группе спиртов (трехатомный спирт). Это бесцветная сиропообразная жидкость, сладковатая на вкус, с широким спектром использования: востребована не только в лекарственных и косметических целях, но и в пищевой, лакокрасочной, бумажной, текстильной промышленности, электротехнике, сельском хозяйстве и пр. Добывают глицерин из растительных жиров или посредством химического синтеза.

Вязкость глицерина довольно высока — составляет 1,48 Па•с при температуре 20 °С, а это почти в 1500 раз выше вязкости воды.

Для перекачивания глицерина больше всего подходят шестеренчатые, импеллерные и мембранные насосы.

Детальное рассмотрение параметров, указанных в таблице

Дело в том, что когда проектировались таблицы и рассматривался алгоритм создания зависимости вязкости масла от температуры, учитывались имеющиеся на тот момент технологии автомобилестроения.

То есть в конце XX века все двигатели строились по приблизительно одной и той же технологии. Температура, контактная нагрузка, создаваемое масляным насосом давление, схема и исполнение магистралей находились примерно на одном и том же технологическом уровне.

Именно под технологии того времени создавались первые таблицы, увязывающие вязкость масла и температуру, при которой оно может эксплуатироваться. Хотя на самом деле стандарт по SAE в чистом виде не привязывается к температуре окружающей среды, а лишь оговаривает вязкостные показатели масла при определенной температуре.

Значение букв и цифр на канистре

В зимний коэффициент (с буквой «W») входят следующие параметры:

  • вязкость при прокачивании смазочного материала по магистралям масляным насосом;
  • вязкость при проворачивании коленчатого вала (для современных двигателей этот показатель учитывается в коренных и шатунных шейках, а также в шейках распределительного вала).

О чем говорят цифры на канистре — видео

В летний коэффициент (идущий через дефис после буквы «W») включаются два основных параметра, один второстепенный, и один производный, рассчитываемый из предыдущих параметров:

  • кинематическая вязкость при 100 °C (то есть при средней рабочей температуре в нагретом ДВС);
  • динамическая вязкость при 150 °C (определяется для представления о вязкости масла в паре трения кольцо/цилиндр – одном из ключевых узлов в работе двигателя);
  • кинематическая вязкость при температуре 40 °C (показывает, как поведет себя масло в момент летнего пуска двигателя, а также используется для изучения скорости самопроизвольного стекания масляной пленки в поддон под действием времени);
  • индекс вязкости – указывает на свойство смазочного материала оставаться стабильным при изменении рабочей температуры.

Зачастую для зимнего ограничения по температуре предусматривается несколько значений. Например, для взятого в качестве примера масла 5W-30, допустимая температура окружающего воздуха при гарантированном прокачивании смазки по системе должна быть не ниже –35 °C. А для гарантированного проворачивания коленчатого вала стартером – не ниже –30 °C.

Класс по SAE Вязкость низкотемпературная Вязкость высокотемпературная
Проворачивание Прокачиваемость Вязкость, мм2/с при t=100°С Min вязкость
HTHS, мПа*с
при t=150°С
и скорости
сдвига 10**6 с**-1
Мах вязкость, мПа*с, при температуре, °С Min Мах
0W 6200 при -35 °С 60000 при -40 °С 3,8
5W 6600 при -30 °С 60000 при -35 °С 3,8
10W 7000 при -25 °С 60000 при -30 °С 4,1
15W 7000 при -20 °С 60000 при -25 °С 5,6
20 W 9500 при -15 °С 60000 при -20 °С 5,6
25 W 13000 при -10 °С 60000 при -15 °С 9,2
20 5,6 2,6
30 9,3 2,9
40 12,5 3,5 (0W-40; 5W-40;10W-40)
40 12,5 3,7 (15W-40; 20W-40; 25W-40)
50 16,3 3,7
60 21,9 3,7

Здесь и возникают противоречивые показания в таблицах вязкости масла, выложенных на разных ресурсах. Второй весомой причиной разных значений в таблицах вязкости выступает изменение технологии производства двигателей и предъявляемые требования к вязкостным параметрам. Но об этом ниже.

Измерение вязкости на вискозиметре с падающим шариком

Измерение вязкости путем определения скорости падения шарика в жидкости проводят с помощью вискозиметра Гепплера (рис. 4).

На рис. 4 показан общий вид вискозиметра с падающим шариком. В комплект вискозиметра входят шарики с диаметром от 10,00 до 15,80 мм, что обеспечивает измерение динамической вязкости градуировочных жидкостей в диапазоне от 0,6 до 8∙104 мПа∙с.

Вискозиметр с падающим шариком

Рисунок 4 – Вискозиметр с падающим шариком

1 – калибровочные отметки; 2 – шарик.

Методика. Для измерения вязкости испытуемую жидкость заливают в трубку, опускают шарик и термостатируют вискозиметр в течение примерно 30 мин при температуре (20 ± 0,1) оС, если не указано иначе в фармакопейной статье. Далее шарик ставят в исходное положение. Включают секундомер, когда нижняя часть шарика коснется верхней метки, и останавливают, когда шарик достигнет нижней метки. Время движения шарика измеряют не менее 5 – 7 раз. При этом разность между наибольшим и наименьшим значениями времени движения шарика не должна превышать 0,5 % от его среднего значения.

Динамическую вязкость испытуемой жидкости вычисляют по формуле:

η = К ∙ (ρш. – ρж.) ∙ tср. ,             (12)

где

η – динамическая вязкость, мПа ∙ с;

К – постоянная вискозиметра;

ρш. и ρж. – плотности шарика и жидкости соответственно, г/см3;

tср. – среднее время движения шарика между крайними метками, с.

Постоянная вискозиметра (К) определяется по формуле:

          (13)

где    η – динамическая вязкость градуировочной жидкости, мПа ∙ с ;

ρш  и ρ  – плотности шарика и градуировочной жидкости соответственно, г/см3;

t0ср– среднее значение времени движения данного шарика в градуировочной жидкости, с.

Число постоянных вискозиметра соответствует числу шариков, входящих в комплект вискозиметра.

При необходимости постоянные прибора могут быть проверены по вышеуказанной формуле с помощью градуировочных жидкостей с известными значениями динамической вязкости. Плотность шариков ρшвычисляют по формуле:

        (14)

где    т – масса шарика, определяемая взвешиванием, г;

d – диаметр шарика, см.

Перед проведением измерений вискозиметр следует тщательно промыть и высушить.

Скачать в PDF ОФС.1.2.1.0015.15 Вязкость

ОПРЕДЕЛЕНИЕ коэффициента вязкости (внутреннего трения) жидкости методом Стокса

Фамилия И.О.
_________________   Группа __________   Дата ______

Введение

Вязкость (внутренне трение)
обуславливается силой трения, возникающей при относительном смещении слоев
жидкости. Вязкость жидкости характеризуется коэффициентом вязкости. Эта
величина определяет свойства жидкости и связывает силу внутреннего трения в
жидкости со скоростью ее частиц.

Физический смысл коэффициента вязкости можно выяснить
из следующих соображений. При установившемся потоке жидкости в трубе различные
слои движущейся жидкости имеют различные скорости. Наибольшую скорость имеет
слой, текущий по центральной части трубы. Слой, непосредственно прилегающий к
стенкам трубы, благодаря прилипанию частичек жидкости к стенкам трубы, имеет
скорость . Поэтому распределение скорости текущей
жидкости по трубе определяется величиной  (градиент
скорости), которая показывает изменение скорости на единицу длины радиуса
трубы. Согласно закону Ньютона, сила внутреннего трения между слоями
определяется формулой:

где       η – коэффициент вязкости;

             — градиент скорости;

S –
площадь поверхности, к которой приложена сила.

Из этой формулы следует:

Если предположить, что S равняется
единице поверхности и градиент скорости равен единице, то η = F, то
есть коэффициент вязкости численно равен силе внутреннего трения между слоями,
действующей на единицу поверхности при градиенте скорости равном единице.

В системе СИ коэффициент вязкости измеряется в Ньютон
секундах на квадратный метр и имеет размерность

Основными методами измерения коэффициента вязкости
являются метод истечения жидкости из капилляра, разработанный Пуазейлем и метод
падения шарика, разработанный Стоксом.

В настоящей работе описывается метод Стокса. Маленький
шарик, изготовленный из материала, плотность которого больше плотности
исследуемой жидкости, опускается в исследуемую жидкость, находящуюся в длинной
трубке. На движущейся шарик действуют три силы:

1.Сила тяжести

где       r – радиус шарика;

            ρ – плотность материала шарика;

g –
ускорение силы тяжести ().

2.Сила Архимеда, направленная против
движения шарика:

здесь ρ1 – плотность
вязкой жидкости.

3.Сила внутреннего трения (сила
сопротивления движения шарика). Эта сила также направлена против движения
шарика. Стокс на основании теоретических исследований установил, что если шарик
движется в жидкости, не вызывая при своем движении никаких завихрений, то сила
сопротивления движения шарика определяется формулой

где  —
скорость падения шарика, r – радиус шарика, η – коэффициент вязкости
жидкости.

Следует учесть, что при движении шарика
имеет место не трение шарика о жидкость, а трение отдельных слоев жидкости друг
о друга, так как шарик обволакивается тонким слоем жидкости, и этот слой
жидкости движется вместе с шариком.

Сила трения с увеличением скорости
движения шарика возрастает, следовательно, при движении шарика скорость его
может достигнуть такой величины, при которой все три силы, действующие на
шарик, будут уравновешены, то есть равнодействующая их будет равна нулю. Такое
движение шарика будет равномерным, и шарик будет двигаться по инерции с
постоянной скоростью. Уравнение динамики для такого движения будет:

или

откуда

При движении шарика в цилиндрическом сосуде с
радиусом R и высотой h учет наличия
стенок, дна сосуда и верхней поверхности приводит к следующему выражению для
коэффициента вязкости, установленному теоретически

здесь   R – радиус цилиндра, h – высота
жидкости.

Для шариков малых радиусов 1-2 мм и трубок достаточно
большого диаметра  малая величина. Ею можно в
наших расчетах пренебречь и расчеты вести по формуле (53).

Следует помнить, что коэффициент вязкости зависит от
температуры. При повышении температуры коэффициент вязкости уменьшается.
Поэтому при определении коэффициента вязкости следует указать температуру.

Порядок выполнения работы

1.Получив у лаборанта микрометр и
несколько стальных и чугунных шариков, определить диаметры шариков при помощи
микрометра с точностью до 0,01 мм. Плотность стали принять равной , плотность свинца — , плотность масла —

2.Температуру считать равной
комнатной температуре.

3.Измерить расстояние между метками
на трубке, в которой должен двигаться шарик.

4.Секундомером определить время
прохождения шариком расстояния между красными линиями ab (рис.22).

Глаз следует поместить так, чтобы отсутствовала ошибка
на параллакс. Опыт повторяют с двумя-тремя шариками.

5.Скорость определяется из
соотношения

6.Данные опыта подставить в формулу
(53).

7.Для каждого шарика  отдельно
измеряют время падения и рассчитывают коэффициент вязкости. Затем определяют

8.Найти относительную и абсолютную
ошибки измерения.

Сила вязкого трения

Это явление возникновения касательных сил, препятствующих перемещению частей жидкости или газа друг по отношению к другу. Смазка между двумя твердыми телами заменяет сухое трение скольжения трением скольжения слоев жидкости или газа по отношению друг к другу. Скорость частиц среды плавно меняется от скорости одного тела до скорости другого тела.

Сила вязкого трения пропорциональна скорости относительного движения V тел, пропорциональна площади S и обратно пропорциональна расстоянию между плоскостями h.

F=-V•S/h,

Коэффициент пропорциональности, зависящий от сорта жидкости или газа, называют коэффициентом динамической вязкости

Самое важное в характере сил вязкого трения то, что при наличии любой сколь угодно малой силы тела придут в движение, то есть не существует трения покоя.
Качественно существенное отличие сил вязкого трения от сухого трения, кроме прочего, то, что тело при наличии только вязкого трения и сколь угодно малой внешней силы обязательно придет в движение, то есть для вязкого трения не существует трения покоя, и наоборот — под действием только вязкого трения тело, вначале двигавшееся, никогда (в рамках макроскопического приближения, пренебрегающего броуновским движением) полностью не остановится, хотя движение и будет бесконечно замедляться.. Если движущееся тело полностью погружено в вязкую среду и расстояния от тела до границ среды много больше размеров самого тела, то в этом случае говорят о трении или сопротивлении среды

При этом участки среды (жидкости или газа), непосредственно прилегающие к движущемуся телу, движутся с такой же скоростью, как и само тело, а по мере удаления от тела скорость соответствующих участков среды уменьшается, обращаясь в нуль на бесконечности

Если движущееся тело полностью погружено в вязкую среду и расстояния от тела до границ среды много больше размеров самого тела, то в этом случае говорят о трении или сопротивлении среды. При этом участки среды (жидкости или газа), непосредственно прилегающие к движущемуся телу, движутся с такой же скоростью, как и само тело, а по мере удаления от тела скорость соответствующих участков среды уменьшается, обращаясь в нуль на бесконечности.

Сила сопротивления среды зависит от:

  • ее вязкости
  • от формы тела
  • от скорости движения тела относительно среды.

Например, при медленном движении шарика в вязкой жидкости силу трения можно найти, используя формулу Стокса:

F=-6•R•V,

Качественно существенное отличие сил вязкого трения от сухого трения, кроме прочего, то, что тело при наличии только вязкого трения и сколь угодно малой внешней силы обязательно придет в движение, то есть для вязкого трения не существует трения покоя, и наоборот — под действием только вязкого трения тело, вначале двигавшееся, никогда (в рамках макроскопического приближения, пренебрегающего броуновским движением) полностью не остановится, хотя движение и будет бесконечно замедляться.

Способ определения

Единица кинематической вязкости была определена ещё в конце сороковых годов двадцатого века советским ученым Я. И. Френкелем. В своих уравнениях он описывал механизм скатывания капель различных жидкостей с различных наклонных поверхностей (формула 2.1, см. рисунок выше), где r и m — радиус и масса капли, α — критический угол скатывания капли, θ — угол отекания капли, σ — коэффициент трения. Из теории о движении молекул и обосновании времени их «осёдлости» Френкелем (и, независимо от него, на два года позже, французским физиком Андраде) было получено соотношение для расчета динамической вязкости (формула 2.2). Такая зависимость носит название «уравнение Френкеля — Андраде», хотя в зарубежной литературе имя советского физика часто опускают, называя её формулой Андраде.

Вязкость битума

Битум — это остаточный продукт, образуемый в ходе переработки нефти. Он представляет собой смесь углеводородов и их производных. По консистенции это вещество твердое или смолоподобное, но при использовании в промышленных условиях (например, при приготовлении асфальтобетонных смесей) его нагревают до текучего состояния. Оптимальная вязкость битума при этом должна составить примерно 20 Па•с.

Для битумов различных марок, имеющих разную консистенцию, температура, которая позволяет достигнуть указанной вязкости, неодинакова. Она колеблется от 100 до 160 °С. Причем при необходимой температуре вещество можно выдерживать не более 5 часов, чтобы не допустить развития процессов старения (при температуре не более 80 °С вязкий битум допускается выдерживать до 12 ч).

Для перекачивания битума в промышленности используют, как правило, шестеренные насосы.

Динамическая вязкость газов и паров в интервале температуры от -220 до 1000°С

В таблице представлена динамическая вязкость газов и паров в зависимости от температуры (при отрицательной и положительной температуре).

Динамическая вязкость газов в таблице выражена в Па·сек с множителем 10-8. Например, коэффициент динамической вязкости азота N2 при нормальных условиях (при температуре 0°С и нормальном атмосферном давлении) равен 1665·10-8 или 0,00001665 Па·с.

Указана динамическая вязкость следующих газов и паров: азот N2, окись азота NO, закись азота N2O5, аммиак NH3, аргон Ar, водород H2, водяной пар H2O, воздух, гелий He, кислород O2, криптон Kr, ксенон Xe, метан CH4, неон Ne, сернистый газ SO2, углекислый газ CO2, окись углерода CO, этан C2H6, этилен C2H4.

По данным таблицы видно, что наиболее вязким газом при комнатной температуре является газ неон — вязкость неона равна 3113·10-8 Па·с.

Вязкость аморфных материалов

Вязкость аморфных материалов (например, стекла или расплавов) — это термически активизируемый процесс:

η(T)=A⋅exp⁡(QRT),{\displaystyle \eta (T)=A\cdot \exp \left({\frac {Q}{RT}}\right),}

где:

  • Q{\displaystyle Q} — энергия активации вязкости (Дж/моль);
  • T{\displaystyle T} — температура (К);
  • R{\displaystyle R} — универсальная газовая постоянная (8,31 Дж/моль·К);
  • A{\displaystyle A} — некоторая постоянная.

Вязкое течение в аморфных материалах характеризуется отклонением от закона Аррениуса: энергия активации вязкости Q{\displaystyle Q} изменяется от большой величины QH{\displaystyle Q_{H}} при низких температурах (в стеклообразном состоянии) на малую величину QL{\displaystyle Q_{L}} при высоких температурах (в жидкообразном состоянии). В зависимости от этого изменения аморфные материалы классифицируются либо как сильные, когда (QH−QL)<QL{\displaystyle \left(Q_{H}-Q_{L}\right)<Q_{L}}, или ломкие, когда (QH−QL)≥QL{\displaystyle \left(Q_{H}-Q_{L}\right)\geq Q_{L}}. Ломкость аморфных материалов численно характеризуется параметром ломкости Доримуса RD=QHQL{\displaystyle R_{D}={\frac {Q_{H}}{Q_{L}}}}: сильные материалы имеют RD<2{\displaystyle R_{D}<2}, в то время как ломкие материалы имеют RD≥2{\displaystyle R_{D}\geq 2}.

Вязкость аморфных материалов весьма точно аппроксимируется двуэкспоненциальным уравнением:

η(T)=A1⋅T⋅1+A2⋅exp⁡BRT⋅1+Cexp⁡DRT{\displaystyle \eta (T)=A_{1}\cdot T\cdot \left\cdot \left}

с постоянными A1{\displaystyle A_{1}}, A2{\displaystyle A_{2}}, B{\displaystyle B}, C{\displaystyle C} и D{\displaystyle D}, связанными с термодинамическими параметрами соединительных связей аморфных материалов.

В узких температурных интервалах недалеко от температуры стеклования Tg{\displaystyle T_{g}} это уравнение аппроксимируется формулами типа VTF или сжатыми экспонентами Кольрауша.

Вязкость

Если температура существенно ниже температуры стеклования T<Tg{\displaystyle T<T_{g}}, двуэкспоненциальное уравнение вязкости сводится к уравнению типа Аррениуса

η(T)=ALT⋅exp⁡(QHRT),{\displaystyle \eta (T)=A_{L}T\cdot \exp \left({\frac {Q_{H}}{RT}}\right),}

с высокой энергией активации QH=Hd+Hm{\displaystyle Q_{H}=H_{d}+H_{m}}, где Hd{\displaystyle H_{d}} — энтальпия разрыва соединительных связей, то есть создания конфигуронов, а Hm{\displaystyle H_{m}} — энтальпия их движения. Это связано с тем, что при T<Tg{\displaystyle T<T_{g}} аморфные материалы находятся в стеклообразном состоянии и имеют подавляющее большинство соединительных связей неразрушенными.

При T≫Tg{\displaystyle T\gg T_{g}} двуэкспоненциальное уравнение вязкости также сводится к уравнению типа Аррениуса

η(T)=AHT⋅exp⁡(QLRT),{\displaystyle \eta (T)=A_{H}T\cdot \exp \left({\frac {Q_{L}}{RT}}\right),}

но с низкой энергией активации QL=Hm{\displaystyle Q_{L}=H_{m}}. Это связано с тем, что при T≫Tg{\displaystyle T\gg T_{g}} аморфные материалы находятся в расправленном состоянии и имеют подавляющее большинство соединительных связей разрушенными, что облегчает текучесть материала.

Немного о вязкости смазочных жидкостей

Вязкость определяется сопротивляемостью жидких материалов течению под различными воздействиями, в частности, силы тяжести. Если сравнивать различные жидкости, к примеру, пчелиный мед и воду, можно заметить, что первая течет гораздо хуже. Вязкость можно рассматривать с точки зрения умения жидкого материала сопротивляться сдвигу частей друг относительно друга или смещению слоя жидкости относительно поверхности деталей во время их совместного передвижения.

В механике сплошных сред различаются две величины вязкости: кинематическая и динамическая.

Динамическая (ДВМ) представляет собой отношение усилия, которое прикладывается к жидкому материалу, к степени искажения. Она измеряется в Па∙с или в Пуазах.

Что такое кинематическая вязкость моторного масла? Она определяется отношением динамической величины к плотности среды при одинаковой температуре. Этот показатель можно получить, измерив время вытекания определенного объема через калиброванное отверстие под воздействием силы тяжести. Измерить индекс позволяет устройство, называемое вискозиметром. Если рассматривается кинематическая вязкость масла: в чем измеряется величина? В различных системах для этого используется несколько единиц: м²/с, стокс, градус Энглера.

Рис.1. Единицы измерения кинематической вязкости масла.

Для определения вязкости выпускается несколько видов приборов. Выбор вискозиметра определяется условиями использования. Устройство может применяться в лабораторных условиях, а также для постоянного контроля состояния жидких материалов. Это часто требуется в производственном процессе. Кроме этого, температурные показатели веществ также могут различаться. Сегодня производится оборудование для работы в температурном режиме минус 50…плюс 2000 градусов.

Чтобы определиться с оптимальным вискозиметром, следует учитывать несколько критериев:

  • необходимую точность замеров;
  • диапазон измерений;
  • условия эксплуатации прибора.

Приборы для определения кинематической вязкости масел (КВМ):

  • Капиллярные. Этот тип оборудования позволяет определить время, за которое установленный объем жидкого вещества сможет преодолеть капилляр.
  • Ротационные. В данном устройстве жидкость, у которой определяется вязкость, размещена между цилиндрами. От одного из них, вращающегося с определенной скоростью, вращательный момент передается через жидкий материал второму, изначально статичному. Показатель вязкости среды оценивается по вращающему моменту второго цилиндрического звена прибора.
  • С движущимся шарообразным телом. Показатель вязкости среды оценивается по расстоянию, которое способен пройти шар, помещенный в жидкое вещество.
  • Пузырьковые. Устройства этого типа предназначены для оценки перемещения газа в жидком материале.
  • Ультразвуковые. Для определения вязкости исследуются импульсы, испускаемые зондом (время их затухания).
  • Вибрационные. В этом оборудовании в жидкую среду опускается зонд, который начинает вибрировать. Определение кинематической вязкости масла проводится посредством оценки степени затухания его колебаний.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector